
The Myth of Self-Describing XML.
Eric Browne - Sept. 2003

The strangeperceptionthat XML is the panaceafor system interoperability, or even
information representation,is seriously affecting how systemsare being designedand
specified. I believe it is encumbent upon those of us who understand and are experienced in
the domainof information representationand processing to try to explain the issuesto
thoselessexperienced.Otherwise,thehypesurroundingXML will exactits toll on usover
the years - a toll the information industry can ill-afford.

I intendto makea starton this by describingtheroleof XML andby illustratingits features
and shortcomingsthrough two examples. One example is the transfer of simple
demographicinformationfrom a hospitalsystemto a GPsystem.Theotheris thepotential
use of XML for helping to transport the Sydney Opera House from Sydney to Perth.

XML standsfor eXtensibleMarkupLanguage,andis a languageframeworkfor structuring
andtaggingpiecesof datafor transmissionfrom onesourcesystemto oneor more other
systems.As such,its primary aim is to “serialise” and“format” the data.By formatting,I
meanencodingthe datavalue from its native representationin the sourcesysteminto a
character-basedrepresentationin the serialisedstream.So a binary floating-point number
might berepresentedas“32.467”, or a binary-coded1 decimalnumbermight berepresented
as“32.468”. If sucha numberrepresented,say,theageof a patient,it might appeartagged
in XML as:-

<patient_age>32.468</patient_age>
or
<patient_age>”32years, 5 months”</patient_age>

This encoding/formattingaspectof XML hasvisual appealand“allows” for interpretation
or decodingby the receivingsystem. At the sametime, however,it placesa processing
burden on sending and receiving systems.

Serialisingof data is the processof creatinga streamof the data items that needto be
transmitted,suchthatonedataitem follows anothersequentiallyin themessage,eventually
beingtransmittedasa sequenceof ‘0’s and‘1’s andultimatelyasa sequenceof electrons
or photonsthat canbe restructuredinto componentsby the receivingsystem.The analogy
with transportingthe SydneyOperaHousehingeson theassumptionthat the OperaHouse
cannotbe transmittedasa completebuilding, andhasto bebrokendown into smallerparts
andplacedonto a seriesof palletsfor transfervia truck or rail. The partscould simply be
placedarbitrarily on their pallets,or could be annotatedand groupedin somefashionto
allow thePerthbuilders to identify theconstituentparts.Either way, serialisationrefersto
theprocessof placing thepartsontoa sequentialstream,thatmay,or maynot, reflecttheir
functional, spatial, or other relationships.

Relationshipsandgroupingsbetweendataitemscanberepresentedby XML. Containment
(e.g. asprincontainsacetyl salicylic acid) and “is-a” (e.g. an analgaesic is a medication)
relationshipsare readily expressedin XML, seductivelyso for containmentrelationships,
sincethey can be visually representedbecauseof XML’s start andend tags,and the oft-
used“tabbing” of fields when illustrating snippetsof XML in documentationor XML-
editors.The useof startandendtagsis alsoa usefulmechanismfor XML-parsers. Thus,
we can express and visualise a simple XML representation of the Sydney Opera House as:-

1 binary-coding is a storage method that allows for decimal numbers to be stored exactly to represent the
number as input or written - i.e. each digit is stored separately.

<Building>
 <name>”The Sydney Opera House”</name>
 <sails>

 <front_left>
 <tiles>

 <tile id=1 material=”ceramic”>23.6</tile>
 <tile id=2 material=”ceramic”>23.6</tile>
 ...

 </tiles>
 </front_left>
<front_right>

 ...
 </front_right>

 ...
 </sails>

 ...
</Building>

As partof its formattingrole,XML canbeusedto formatandannotatea datastream.In its
simplestform, the formatting consistsof delimiting individual dataitems using <> tags
and, optionally, encodingbinary data into charactersthat representbinary data, such as
numbers,dates,etc. In its simplest form, the annotation consistsof giving common
languagenamesto thedelimiting <> tags,to tell the receivingsystemthatthenextpieceof
data in the streamis a nameor a date or a diagnosiscode etc. The annotationcan be
enhancedto provideadditionalqualifierson eachdataitem, suchasname(at birth) or date
(whendiagnosed)or (codeset for) diagnosiscode.Thesearetermedattributesof the data
item/element. Data streamshavebeendelimited and encodedin variousways sincethe
inceptionof computers.Annotationhasbeenlesscommon,andis theaspectthatnow leads
many people to suggest that XML data streams are self-describing.

Thus, the tagging and qualifying (via attributes)of data, allows the sendingsystemto
expressvaluesof complexconcepts.Taggeddataelementsmaybeorderedandgroupedto
expressvalues of even more complex concepts. Furthermore,the XML standardhas
evolvedover the yearsto allow the expressionof relationshipsbetweenonedataitem (an
instanceof a concept),andanotherdataitem somewhereelsein the datastream.A given
datastreamcanhaveits formattingandannotationsubjectto a setof rules,thatstatewhich
tagsandattributesarepermittedunderwhatcircumstances.Theserulescanbeplacedin a
separatedocumentandsentindependentlyto receivingsystemsto help thosesystemsparse
and decode all data streams formatted according to those rules or “schema”.

It is partly the potential richnessof the annotationof the datastream,togetherwith the
adherenceto somepredefinedset of rules(schema),that has led to a misconception,by
manyin theIT industry,thatdatastreamsexpressedin XML are,somehow,self describing
in a way thattheirmeaningcanalwaysbediscernedby thereceivingsystem.Nothingcould
be further from the truth! But the issue that probably leads most peopleastray is the
confusioncausedby the visual representationof XML on the one hand,set againstits
intended purpose of interpretation of data by receiving machines.

Consider the following:-

<Patient>

 <firstname>”Eric”</firstname>

 <lastname>”Browne”</lastname>

 <age>18.6</age>

 <medicare>

 <number>1234567</number>

 <join_date>”31/2/98”</join_date>

 </medicare>

</Patient>

Becausewe humanscanreadily comprehendthis message,we tend to prescribea similar
facility to machines.But XML is not intendedto bereadprimarily by humans!We should
considerhow suchmessageswould appearto a machine,which doesn’thaveour level of
knowledgeandunderstanding.The aboveexampleshouldmoreappropriatelybeexpressed
something like this:-

<pzagg><ffgf>"Eric"</ffgf><pskk>”Browne”</pskk><a1>18.6</a1><
mzdcyy><nnb>1234567</nnb><jzndd>”31/2/98”</jzndd></mzdcyy></p
zagg>

[Even when readingthe abovestream,as humans,we tend to impute meaningfrom the
dataitself - e.g.we infer that “Eric ” is the nameof a person.This is not the casefor
machines.]

Whenthereceivingsystemreceivessucha message,it hasto do somethingwith it! It hasto
“parse” it andit hasto “processit”. It doesthe former usinggenericsoftwarethat merely
understandsthestructureandsyntax.It doesthe latterby applyingwhat is oftendescribed
as“businesslogic” or “businessrules” to the dataitems,so that the datacanbe validated,
placedin appropriatelocationsin the receiver’spersistentstore(for later processing), or
shippedout to a userinterfaceor ..., etc.This businesslogic hasto processthe datain the
messagesaccordingto their meaningor semantics.This businesslogic mustexista priori -
it musthavebeencreatedfrom someconceptualmodelthatdescribesthedomainto which
themessagebelongs.Thebusinesslogic cannotbeconstructedpost priori! Themeaningof
a <pzagg> cannotbesuppliedalongwith themessage.[or if it were,themessageswould
be unworkably huge,and would still needto be expressedin termsof an agreedset of
lower-level componentsfrom which the businesslogic is built]. The businesslogic
processesthe messageby comparingpatternsin the receivedmessages,to patternsit
already knows about. Whena patternmatchoccurs,thedataassociatedwith thosepatterns
is thenprocessedaccordingto oneor morerules.Both thepatternsandtheruleshaveto be
known a priori! That is the essenceof businesslogic. That is the essenceof almostany
softwarethat needsto processmessages.If the receivingsystemreceivesan XML tag that
is not in its vocabulary,it cando very little with it. It cannotmagicallyimputemeaningto
it, just as we humans cannot impute meaning to a <pzagg> or a <mzdcyy> .

Considernow, our hospital system,sendingits patient demographicdata to a General
Practitioner's (GP) system. The hospital might store information thus:-

name

address line 1

address line 2

address line 3

address line 4

address line 5

employment category

The GP system might store demographics as:-

firstname

lastname

middle initial

street number

suburb/town

postcode

employment status

No amountof XML formattingis goingto makethesesystemsinteroperable.Thebusiness
logic at eachend needsto change.They both needto conform to a commonconceptual
model.Eventhoughthe GP might be ableto, the GP system cannotsimply “understand”
XML messages of the form :-

<name>”Rev. Eric Browne”</name> <address_line_1>”c/o
Bournemouth Caravan Park”</address_line_1> <address_line_2>
”Camden South”</address_line_2>
<employment_category>”baker”</employment_category>

Even where an XML-schemasupposedly“describing” the contentof such messagesis
supplied,there is still a major gulf betweenone systemand the other. This “impedance
mismatch”cannotbe overcomewithout recourseto a commonconceptualmodel,to which
both systems conform.

Finally, considerthe transportof the SydneyOperaHouseto Perth,as describedearlier.
Now unlessthe Perthbuilder hasthe correctnotion of the conceptsthat the taggedparts
arriving from Sydneyrepresent,sheis not likely to reconstructthe OperaHousein Perth,
the way it was in Sydney.The Perthconceptionof <front_left> may not matchthe
Sydneyconvention,and Perthcould endup with a much deformedversionof the famed
Sydney building. So even though the XML is being directly interpretedhere by an
intelligent human, there is still potential for misunderstanding.

How much worse could the result of such misunderstandings be for patient care!

It is critical that we considerthe effect of embarkingon a new methodologyfor data
messageconstruction, when the characteristicsof such a methodology are often
misunderstood and misrepresented by its proponents.

XML is not intended for consumption by humans, but by machines!

And machines are not humans!

Why the Hype?

So why is it that XML has garneredsuch an unwarrantedfollowing as a panaceafor
interoperability.Well, in orderto explainthis, it is necessaryto describesomeof thehistory
of XML. First andforemost,XML hasriddenon the backof HTML (HyperTextMarkup
Language),which allowsfor documentsto bemarkedup anddeliveredto webbrowserson
client machines.Ratherthansimply taggingpartsof a documentfor formattingpurposes,as
is thecasewith HTML, it wasconsidereddesirableto markup,or describethedocumentin
terms of its content,so that receivingsystemscould “process” the information in more
flexible ways. XML was developedto allow flexibility in the way documentscould be
markedup.Thetagsto beusedfor annotatingpartsof thedocument,couldbespecifiedin a
DTD (Document Type Descriptor) which could be used by receiving systems to
“understand”the documentstructure,andto processit accordingto the receivingsystem's
requirements.

Theadventof businessto businesse-commercerequireda mechanismfor dataandprocess
interoperability,basedon exchangeof information using web (HTTP) protocols.XML
seemedlike a good option. It had alreadybeenusedfor limited exchangeof web-based
resources,using RDF (ResourceDescriptorFramework)and RSS(RDF Site Summary).
However,the numberof conceptsthat neededto be representedwasvery small. As XML
startedto be usedto cover a broaderrangeof more complex information structures,the
schema syntax became more complex. XML-Schema is a particularly complex
specification, and although endorsed and promoted by W3C (World Wide Web
Consortium),is only one of a number of schemarepresentationsin use. Yet its very
existence,andthe fact that it substantiallyovercomesmanyof the shortcomingsof DTDs,
has led to a belief by many that it “solves” the semanticinteroperabilityproblem, by
adequatelydescribingalmost any documentstructure,even if it only does this in the
semantic frame of reference of the source system.

It is this last rider, that is overlooked by many proponents of XML.

XML has beenlargely promotedby programmersand systemsarchitects,becausesuch
peopleare able to “see”, and therefore“understand”the semanticsof DTDs and XML-
Schemas.It is programmerswho write the businesslogic that processesthe parseddata
streams,andsinceeveryexamplein everytext book,andin everyclassroomuseselements
and attributes that convey implicit meaning to the reader, such programmersand
developersforget thatsuchmeaningis implicitly unknowableby themachinesthemselves.
Themachinesneedto be instructedwhat to do with eachelementandattribute,if they are
to “understand” and act on the semantics of the message.

XML is very usefulfor describingthestructureof datastreams;it cantag individual items
of data;it canqualify suchitems;it canassociateindividual itemswith othersin thestream;
it cangroup items together;and, augmentedwith XML-Schemaor its alternatives,it can
allow for constraining,validation,data-typingandotherstructuralniceties,that hithertofor
havebeendifficult to achieveacrossa rangeof operatingsystemsandAPIs (Application
ProgrammingInterfaces).Therearemanytools availableto developers.It looks somewhat
like HTML. It is supported by a well-funded independentinternational standards
organisation. In short, XML is a very useful and widely adopted technology.

Adoption and acceptanceof a technology, when it reachessome critical threshold,
automaticallyinducesfurther acceptance,irrespectiveof the meritsof the technology.One

invariably hears“We should adopt this technologybecauseit has becomea de facto
standard”.But what is XML a de facto standardfor? What shouldwe adoptit for? It may
well be appropriatefor formating and serializing data streamsfor exchangebetween
systems,but, by itself, it certainly is not adequatefor semanticinteroperabilityamongst
heterogeneous systems devoid of a common conceptual model of their domain.

References:

Cover R. , XML and Semantic Transparency, 1998 http://www.oasis-
open.org/cover/xmlAndSemantics.html

Smith H, Poulter K., The Role of Shared Ontology in XML-Based Trading Architectures, Ontology.Org
Included within Communications of the ACM, special issue on Agent Software, 1999
http://www.ontology.org/main/papers/cacm-agents99.html

Simeon J. & Wadler P. The Essence of XML, ACM Symposium on Principles of Programming
Languages (POPL'03)., 2003,

